Give each function its own file.

This commit is contained in:
Sacha Ligthert 2025-01-28 18:12:03 +01:00
parent a314e945ed
commit b83d6bdde4
20 changed files with 411 additions and 386 deletions

View File

@ -6,7 +6,7 @@ import (
)
// Print solutions into a human friendly format for in the console.
func (export *Export) PrintHumanSolutions() {
func (export *Export) PrintHumanReadableSolutions() {
for solutionIndex, solution := range export.Controller.Solutions {
log.Printf("\nSolution #%d:", solutionIndex+1)
fmt.Println("╔═══════════╗")

View File

@ -2,7 +2,6 @@ package flags
import (
"flag"
"fmt"
"log"
"os"
"runtime"
@ -83,72 +82,3 @@ func (flags *Flags) ParseFlags() {
}
}
// Validate if a row is properly set.
// This check for:
// - Correct length
// - Correct numbers
// - Numbers only present once
func (flags *Flags) validateRow(name string, row string) {
var found bool
var double bool
count := make(map[rune]int)
// 1. Make sure the row is 9 in length
if len(row) != 9 {
log.Printf("ERROR: Invalid length of %s (%s), must be 9 numbers\n\n", name, row)
flags.printUsage()
os.Exit(1)
}
// 2. Ensure all digits are numbers
for _, value := range row {
found = flags.validChar(value)
}
if !found {
log.Printf("ERROR: Invalid character of %s (%s), must be 9 numbers\n\n", name, row)
flags.printUsage()
os.Exit(1)
}
// 3. Ensure all digits (except zero) are there only once
for _, digits := range row {
count[digits] = count[digits] + 1
}
for key, value := range count {
if value > 1 && key != 48 {
double = true
}
}
if double {
log.Printf("ERROR: Double character of %s (%s), numbers between 1 and 9 may only be entered once\n\n", name, row)
flags.printUsage()
os.Exit(1)
}
}
// Validate if the char provided is 0-9
func (flags *Flags) validChar(char rune) (valid bool) {
decvals := [10]int{48, 49, 50, 51, 52, 53, 54, 55, 56, 57}
for _, value := range decvals {
if char == rune(value) {
valid = true
}
}
return
}
// Print help information for the end-user
func (flags *Flags) printUsage() {
fmt.Fprintf(flag.CommandLine.Output(), "Usage of %s:\n", os.Args[0])
fmt.Fprintf(flag.CommandLine.Output(), "\nPut every row of a Sudoku puzzle as paramters.\nUse '0' for what is currently blank in the puzzle you wish to solve.\n\n")
fmt.Fprintf(flag.CommandLine.Output(), "Example: %s -row1 ... -row2 ... -row3 ... (etc)\n\n", os.Args[0])
flag.PrintDefaults()
}

28
flags/printUsage.go Normal file
View File

@ -0,0 +1,28 @@
package flags
import (
"flag"
"fmt"
"os"
)
// Validate if the char provided is 0-9
func (flags *Flags) validChar(char rune) (valid bool) {
decvals := [10]int{48, 49, 50, 51, 52, 53, 54, 55, 56, 57}
for _, value := range decvals {
if char == rune(value) {
valid = true
}
}
return
}
// Print help information for the end-user
func (flags *Flags) printUsage() {
fmt.Fprintf(flag.CommandLine.Output(), "Usage of %s:\n", os.Args[0])
fmt.Fprintf(flag.CommandLine.Output(), "\nPut every row of a Sudoku puzzle as paramters.\nUse '0' for what is currently blank in the puzzle you wish to solve.\n\n")
fmt.Fprintf(flag.CommandLine.Output(), "Example: %s -row1 ... -row2 ... -row3 ... (etc)\n\n", os.Args[0])
flag.PrintDefaults()
}

54
flags/validateRow.go Normal file
View File

@ -0,0 +1,54 @@
package flags
import (
"log"
"os"
)
// Validate if a row is properly set.
// This check for:
// - Correct length
// - Correct numbers
// - Numbers only present once
func (flags *Flags) validateRow(name string, row string) {
var found bool
var double bool
count := make(map[rune]int)
// 1. Make sure the row is 9 in length
if len(row) != 9 {
log.Printf("ERROR: Invalid length of %s (%s), must be 9 numbers\n\n", name, row)
flags.printUsage()
os.Exit(1)
}
// 2. Ensure all digits are numbers
for _, value := range row {
found = flags.validChar(value)
}
if !found {
log.Printf("ERROR: Invalid character of %s (%s), must be 9 numbers\n\n", name, row)
flags.printUsage()
os.Exit(1)
}
// 3. Ensure all digits (except zero) are there only once
for _, digits := range row {
count[digits] = count[digits] + 1
}
for key, value := range count {
if value > 1 && key != 48 {
double = true
}
}
if double {
log.Printf("ERROR: Double character of %s (%s), numbers between 1 and 9 may only be entered once\n\n", name, row)
flags.printUsage()
os.Exit(1)
}
}

View File

@ -48,7 +48,7 @@ func main() {
// Print the valid solutions
switch controller.Output {
case "human":
export.PrintHumanSolutions()
export.PrintHumanReadableSolutions()
case "flat":
export.PrintFlatSolutions()
}

View File

@ -0,0 +1,24 @@
package solver
// Iterate through all combination of blocks and validate them.
func (solver *Solver) CheckCombinations() {
for rows1Index := range solver.row1s {
for rows2Index := range solver.row2s {
for rows3Index := range solver.row3s {
for rows4Index := range solver.row4s {
for rows5Index := range solver.row5s {
for rows6Index := range solver.row6s {
for rows7Index := range solver.row7s {
for rows8Index := range solver.row8s {
for rows9Index := range solver.row9s {
go solver.validator(rows1Index, rows2Index, rows3Index, rows4Index, rows5Index, rows6Index, rows7Index, rows8Index, rows9Index)
}
}
}
}
}
}
}
}
}
}

27
solver/PopulateBlocks.go Normal file
View File

@ -0,0 +1,27 @@
package solver
import (
"log"
"time"
)
// Find all possible blocks that can be used to find a solution.
func (solver *Solver) PopulateBlocks() {
defer solver.timeTrack(time.Now(), "Populated blocks")
log.Println("Populating blocks")
solver.findBlocks(&solver.Controller.Row1, &solver.row1s)
solver.findBlocks(&solver.Controller.Row2, &solver.row2s)
solver.findBlocks(&solver.Controller.Row3, &solver.row3s)
solver.findBlocks(&solver.Controller.Row4, &solver.row4s)
solver.findBlocks(&solver.Controller.Row5, &solver.row5s)
solver.findBlocks(&solver.Controller.Row6, &solver.row6s)
solver.findBlocks(&solver.Controller.Row7, &solver.row7s)
solver.findBlocks(&solver.Controller.Row8, &solver.row8s)
solver.findBlocks(&solver.Controller.Row9, &solver.row9s)
// This calculates and stores the total number of solutions to validate.
solver.Iter = uint64(len(solver.row1s)) * uint64(len(solver.row2s)) * uint64(len(solver.row3s)) * uint64(len(solver.row4s)) * uint64(len(solver.row5s)) * uint64(len(solver.row6s)) * uint64(len(solver.row7s)) * uint64(len(solver.row8s)) * uint64(len(solver.row9s))
}

23
solver/SelectWorkload.go Normal file
View File

@ -0,0 +1,23 @@
package solver
import (
"log"
"os"
"strconv"
"time"
)
// Renders workload for an agent.
// Checks if this feature can be used, otherwise exits.
// Modify solver.row1s so it limits the workload to what is only desired
func (solver *Solver) SelectWorkload() {
if solver.Controller.Split > len(solver.row1s) {
log.Println("ERROR: Unable to divide the workload in " + strconv.Itoa(solver.Controller.Split) + " parts, when only " + strconv.Itoa(len(solver.row1s)) + " are available.\n\n")
os.Exit(1)
}
defer solver.timeTrack(time.Now(), "Workload set")
log.Println("Setting workload")
log.Println("We are agent " + strconv.Itoa(solver.Controller.Part) + " of " + strconv.Itoa(solver.Controller.Split))
workloads := solver.splitWorkload()
solver.setWorkload(workloads)
}

103
solver/Tracker.go Normal file
View File

@ -0,0 +1,103 @@
package solver
import (
"log"
"strconv"
"time"
)
// Keep track and output progress.
// Calculate rates, display percentages, estimate the ETA till completion.
func (solver *Solver) Tracker() {
// Add time tracking
defer solver.timeTrack(time.Now(), "Validated solutions")
log.Println("Validating solutions")
// Determine if the main-loop is done
var done bool
// Tracking progress in percentages
var percentage float32
// Tracking progress in validated solutions
var track int
// Tracking the rate, starting point
var rateStart uint64
// Tracking the rate, difference between previous iterations
var rateDiff uint64
// Tracking duration
var timerStart = time.Now()
// Estimation how long it will take
var est_fin string
// While not needed for rateDiff anymore, it makes estimation calculations more accurate. ☹️
time.Sleep(time.Second)
// for solver.Iter != solver.counter { // Start for-loop
for !done {
// Determine how far we are.
percentage = (float32(solver.counter.Load()) / (float32(solver.Iter) / 100))
// Reset the loop
rateDiff = solver.counter.Load() - rateStart
if track <= int(percentage) || rateDiff == 0 { // Start if-statement
// Make sure something happened, making rateStart the only reliable variable
if solver.Iter == solver.counter.Load() {
percentage = 100
solver.counter.Store(solver.Iter)
done = true
}
timer_elapsed := time.Since(timerStart)
solver.rates = append(solver.rates, rateDiff)
rate_avg := solver.calcAVG()
// Estimate when this is finished
if rateDiff == 0 {
est_fin = "N/A"
} else {
duration_int := (solver.Iter - solver.counter.Load()) / rate_avg
duration_string := strconv.Itoa(int(duration_int)) + "s"
est, err := time.ParseDuration(duration_string)
if err != nil {
est_fin = "parse error"
} else {
est_fin = est.String()
}
}
// Printing the progress
log.Println("Processing: " + strconv.Itoa(int(percentage)) + "% (" + strconv.FormatUint(solver.counter.Load(), 10) + "/" + strconv.Itoa(int(solver.Iter)) + "); Rate: " + strconv.FormatUint(rateDiff, 10) + "/sec for " + timer_elapsed.String() + "; Time left (est.): " + est_fin)
// After we are done printing, exit this for-loop
if percentage == 100 {
break
}
// Wrap up the loop or break
if int(percentage) > track {
track = int(percentage)
} else {
track = track + 1
}
timerStart = time.Now()
}
// Resert the rate counter
rateStart = solver.counter.Load()
// Sleep for a second
if solver.Iter != solver.counter.Load() {
time.Sleep(1 * time.Second)
}
} // End for-loop
}

14
solver/calcAVG.go Normal file
View File

@ -0,0 +1,14 @@
package solver
// Calculate the average rate in a stored slice of rates.
func (solver *Solver) calcAVG() (avg uint64) {
var avgSum uint64
for _, value := range solver.rates {
avgSum += uint64(value)
}
avg = avgSum / uint64(len(solver.rates))
return
}

37
solver/findBlocks.go Normal file
View File

@ -0,0 +1,37 @@
package solver
// The actual function that finds the blocks matching the partial blocks.
func (solver *Solver) findBlocks(row *string, rows *[]string) {
// Declare selection
var selection []string
var currBlocks []string
funcRow := *row
for letter := range funcRow {
if len(selection) == 0 {
currBlocks = solver.Controller.Blocks
} else {
currBlocks = selection
selection = nil
}
for _, block := range currBlocks {
currRow := block
if funcRow[letter] == currRow[letter] {
foundRow := currRow
selection = append(selection, foundRow)
}
if funcRow[letter] == '0' {
foundRow := currRow
selection = append(selection, foundRow)
}
} // End for-loop
} // End for-loop
*rows = selection
}

View File

@ -1,253 +0,0 @@
package solver
import (
"log"
"strconv"
"time"
)
// Find all possible blocks that can be used to find a solution.
func (solver *Solver) PopulateBlocks() {
defer solver.timeTrack(time.Now(), "Populated blocks")
log.Println("Populating blocks")
solver.findBlocks(&solver.Controller.Row1, &solver.row1s)
solver.findBlocks(&solver.Controller.Row2, &solver.row2s)
solver.findBlocks(&solver.Controller.Row3, &solver.row3s)
solver.findBlocks(&solver.Controller.Row4, &solver.row4s)
solver.findBlocks(&solver.Controller.Row5, &solver.row5s)
solver.findBlocks(&solver.Controller.Row6, &solver.row6s)
solver.findBlocks(&solver.Controller.Row7, &solver.row7s)
solver.findBlocks(&solver.Controller.Row8, &solver.row8s)
solver.findBlocks(&solver.Controller.Row9, &solver.row9s)
// This calculates and stores the total number of solutions to validate.
solver.Iter = uint64(len(solver.row1s)) * uint64(len(solver.row2s)) * uint64(len(solver.row3s)) * uint64(len(solver.row4s)) * uint64(len(solver.row5s)) * uint64(len(solver.row6s)) * uint64(len(solver.row7s)) * uint64(len(solver.row8s)) * uint64(len(solver.row9s))
}
// The actual function that finds the blocks matching the partial blocks.
func (solver *Solver) findBlocks(row *string, rows *[]string) {
// Declare selection
var selection []string
var currBlocks []string
funcRow := *row
for letter := range funcRow {
if len(selection) == 0 {
currBlocks = solver.Controller.Blocks
} else {
currBlocks = selection
selection = nil
}
for _, block := range currBlocks {
currRow := block
if funcRow[letter] == currRow[letter] {
foundRow := currRow
selection = append(selection, foundRow)
}
if funcRow[letter] == '0' {
foundRow := currRow
selection = append(selection, foundRow)
}
} // End for-loop
} // End for-loop
*rows = selection
}
// Iterate through all combination of blocks and validate them.
func (solver *Solver) CheckCombinations() {
for rows1Index := range solver.row1s {
for rows2Index := range solver.row2s {
for rows3Index := range solver.row3s {
for rows4Index := range solver.row4s {
for rows5Index := range solver.row5s {
for rows6Index := range solver.row6s {
for rows7Index := range solver.row7s {
for rows8Index := range solver.row8s {
for rows9Index := range solver.row9s {
go solver.validator(rows1Index, rows2Index, rows3Index, rows4Index, rows5Index, rows6Index, rows7Index, rows8Index, rows9Index)
}
}
}
}
}
}
}
}
}
}
// Validate the provided rows and verify it is a valid solution.
func (solver *Solver) validator(rows1Index int, rows2Index int, rows3Index int, rows4Index int, rows5Index int, rows6Index int, rows7Index int, rows8Index int, rows9Index int) {
solver.counter.Add(1)
if solver.validateCombination(solver.row1s[rows1Index], solver.row2s[rows2Index], solver.row3s[rows3Index], solver.row4s[rows4Index], solver.row5s[rows5Index], solver.row6s[rows6Index], solver.row7s[rows7Index], solver.row8s[rows8Index], solver.row9s[rows9Index]) {
solver.Controller.Solutions = append(solver.Controller.Solutions, []string{solver.row1s[rows1Index], solver.row2s[rows2Index], solver.row3s[rows3Index], solver.row4s[rows4Index], solver.row5s[rows5Index], solver.row6s[rows6Index], solver.row7s[rows7Index], solver.row8s[rows8Index], solver.row9s[rows9Index]})
}
}
// Keep track and output progress.
// Calculate rates, display percentages, estimate the ETA till completion.
func (solver *Solver) Tracker() {
// Add time tracking
defer solver.timeTrack(time.Now(), "Validated solutions")
log.Println("Validating solutions")
// Determine if the main-loop is done
var done bool
// Tracking progress in percentages
var percentage float32
// Tracking progress in validated solutions
var track int
// Tracking the rate, starting point
var rateStart uint64
// Tracking the rate, difference between previous iterations
var rateDiff uint64
// Tracking duration
var timerStart = time.Now()
// Estimation how long it will take
var est_fin string
// While not needed for rateDiff anymore, it makes estimation calculations more accurate. ☹️
time.Sleep(time.Second)
// for solver.Iter != solver.counter { // Start for-loop
for !done {
// Determine how far we are.
percentage = (float32(solver.counter.Load()) / (float32(solver.Iter) / 100))
// Reset the loop
rateDiff = solver.counter.Load() - rateStart
if track <= int(percentage) || rateDiff == 0 { // Start if-statement
// Make sure something happened, making rateStart the only reliable variable
if solver.Iter == solver.counter.Load() {
percentage = 100
solver.counter.Store(solver.Iter)
done = true
}
timer_elapsed := time.Since(timerStart)
solver.rates = append(solver.rates, rateDiff)
rate_avg := solver.calcAVG()
// Estimate when this is finished
if rateDiff == 0 {
est_fin = "N/A"
} else {
duration_int := (solver.Iter - solver.counter.Load()) / rate_avg
duration_string := strconv.Itoa(int(duration_int)) + "s"
est, err := time.ParseDuration(duration_string)
if err != nil {
est_fin = "parse error"
} else {
est_fin = est.String()
}
}
// Printing the progress
log.Println("Processing: " + strconv.Itoa(int(percentage)) + "% (" + strconv.FormatUint(solver.counter.Load(), 10) + "/" + strconv.Itoa(int(solver.Iter)) + "); Rate: " + strconv.FormatUint(rateDiff, 10) + "/sec for " + timer_elapsed.String() + "; Time left (est.): " + est_fin)
// After we are done printing, exit this for-loop
if percentage == 100 {
break
}
// Wrap up the loop or break
if int(percentage) > track {
track = int(percentage)
} else {
track = track + 1
}
timerStart = time.Now()
}
// Resert the rate counter
rateStart = solver.counter.Load()
// Sleep for a second
if solver.Iter != solver.counter.Load() {
time.Sleep(1 * time.Second)
}
} // End for-loop
}
// Validate combination
func (solver *Solver) validateCombination(row1 string, row2 string, row3 string, row4 string, row5 string, row6 string, row7 string, row8 string, row9 string) (retval bool) {
retval = true
for index := range 9 {
if row1[index] == row2[index] || row1[index] == row3[index] || row1[index] == row4[index] || row1[index] == row5[index] || row1[index] == row6[index] || row1[index] == row7[index] || row1[index] == row8[index] || row1[index] == row9[index] {
retval = false
}
if row2[index] == row1[index] || row2[index] == row3[index] || row2[index] == row4[index] || row2[index] == row5[index] || row2[index] == row6[index] || row2[index] == row7[index] || row2[index] == row8[index] || row2[index] == row9[index] {
retval = false
}
if row3[index] == row1[index] || row3[index] == row2[index] || row3[index] == row4[index] || row3[index] == row5[index] || row3[index] == row6[index] || row3[index] == row7[index] || row3[index] == row8[index] || row3[index] == row9[index] {
retval = false
}
if row4[index] == row1[index] || row4[index] == row2[index] || row4[index] == row3[index] || row4[index] == row5[index] || row4[index] == row6[index] || row4[index] == row7[index] || row4[index] == row8[index] || row4[index] == row9[index] {
retval = false
}
if row5[index] == row1[index] || row5[index] == row2[index] || row5[index] == row3[index] || row5[index] == row4[index] || row5[index] == row6[index] || row5[index] == row7[index] || row5[index] == row8[index] || row5[index] == row9[index] {
retval = false
}
if row6[index] == row1[index] || row6[index] == row2[index] || row6[index] == row3[index] || row6[index] == row4[index] || row6[index] == row5[index] || row6[index] == row7[index] || row6[index] == row8[index] || row6[index] == row9[index] {
retval = false
}
if row7[index] == row1[index] || row7[index] == row2[index] || row7[index] == row3[index] || row7[index] == row4[index] || row5[index] == row6[index] || row7[index] == row6[index] || row7[index] == row8[index] || row7[index] == row9[index] {
retval = false
}
if row8[index] == row1[index] || row8[index] == row2[index] || row8[index] == row3[index] || row8[index] == row4[index] || row8[index] == row5[index] || row8[index] == row6[index] || row8[index] == row7[index] || row8[index] == row9[index] {
retval = false
}
if row9[index] == row1[index] || row9[index] == row2[index] || row9[index] == row3[index] || row9[index] == row4[index] || row9[index] == row5[index] || row9[index] == row6[index] || row9[index] == row7[index] || row9[index] == row8[index] {
retval = false
}
}
return retval
}
// Calculate the average rate in a stored slice of rates.
func (solver *Solver) calcAVG() (avg uint64) {
var avgSum uint64
for _, value := range solver.rates {
avgSum += uint64(value)
}
avg = avgSum / uint64(len(solver.rates))
return
}

21
solver/setWorkload.go Normal file
View File

@ -0,0 +1,21 @@
package solver
// Set the workload by setting solver.row1s
func (solver *Solver) setWorkload(agents []int) {
var start int = 0
var finish int = 0
for key, value := range agents {
if key == solver.Controller.Part-1 {
finish = start + value
break
} else {
start += value
}
}
// Set the shortened set of instructions
solver.row1s = solver.row1s[start:finish]
// Recalculate how much we need to grind through
solver.Iter = uint64(len(solver.row1s)) * uint64(len(solver.row2s)) * uint64(len(solver.row3s)) * uint64(len(solver.row4s)) * uint64(len(solver.row5s)) * uint64(len(solver.row6s)) * uint64(len(solver.row7s)) * uint64(len(solver.row8s)) * uint64(len(solver.row9s))
}

View File

@ -1,61 +0,0 @@
package solver
import (
"log"
"os"
"strconv"
"time"
)
// Renders workload for an agent.
// Checks if this feature can be used, otherwise exits.
// Modify solver.row1s so it limits the workload to what is only desired
func (solver *Solver) SelectWorkload() {
if solver.Controller.Split > len(solver.row1s) {
log.Println("ERROR: Unable to divide the workload in " + strconv.Itoa(solver.Controller.Split) + " parts, when only " + strconv.Itoa(len(solver.row1s)) + " are available.\n\n")
os.Exit(1)
}
defer solver.timeTrack(time.Now(), "Workload set")
log.Println("Setting workload")
log.Println("We are agent " + strconv.Itoa(solver.Controller.Part) + " of " + strconv.Itoa(solver.Controller.Split))
workloads := solver.splitWorkload()
solver.setWorkload(workloads)
}
// Determine how workload should be split among the agents
func (solver *Solver) splitWorkload() []int {
agents := make([]int, solver.Controller.Split)
var tracker int
var tasks int = len(solver.row1s)
for tasks != 0 {
agents[tracker] += 1
tasks -= 1
tracker += 1
if tracker == solver.Controller.Split {
tracker = 0
}
}
return agents
}
// Set the workload by setting solver.row1s
func (solver *Solver) setWorkload(agents []int) {
var start int = 0
var finish int = 0
for key, value := range agents {
if key == solver.Controller.Part-1 {
finish = start + value
break
} else {
start += value
}
}
// Set the shortened set of instructions
solver.row1s = solver.row1s[start:finish]
// Recalculate how much we need to grind through
solver.Iter = uint64(len(solver.row1s)) * uint64(len(solver.row2s)) * uint64(len(solver.row3s)) * uint64(len(solver.row4s)) * uint64(len(solver.row5s)) * uint64(len(solver.row6s)) * uint64(len(solver.row7s)) * uint64(len(solver.row8s)) * uint64(len(solver.row9s))
}

19
solver/splitWorkload.go Normal file
View File

@ -0,0 +1,19 @@
package solver
// Determine how workload should be split among the agents
func (solver *Solver) splitWorkload() []int {
agents := make([]int, solver.Controller.Split)
var tracker int
var tasks int = len(solver.row1s)
for tasks != 0 {
agents[tracker] += 1
tasks -= 1
tracker += 1
if tracker == solver.Controller.Split {
tracker = 0
}
}
return agents
}

View File

@ -0,0 +1,47 @@
package solver
// Validate combination
func (solver *Solver) validateCombination(row1 string, row2 string, row3 string, row4 string, row5 string, row6 string, row7 string, row8 string, row9 string) (retval bool) {
retval = true
for index := range 9 {
if row1[index] == row2[index] || row1[index] == row3[index] || row1[index] == row4[index] || row1[index] == row5[index] || row1[index] == row6[index] || row1[index] == row7[index] || row1[index] == row8[index] || row1[index] == row9[index] {
retval = false
}
if row2[index] == row1[index] || row2[index] == row3[index] || row2[index] == row4[index] || row2[index] == row5[index] || row2[index] == row6[index] || row2[index] == row7[index] || row2[index] == row8[index] || row2[index] == row9[index] {
retval = false
}
if row3[index] == row1[index] || row3[index] == row2[index] || row3[index] == row4[index] || row3[index] == row5[index] || row3[index] == row6[index] || row3[index] == row7[index] || row3[index] == row8[index] || row3[index] == row9[index] {
retval = false
}
if row4[index] == row1[index] || row4[index] == row2[index] || row4[index] == row3[index] || row4[index] == row5[index] || row4[index] == row6[index] || row4[index] == row7[index] || row4[index] == row8[index] || row4[index] == row9[index] {
retval = false
}
if row5[index] == row1[index] || row5[index] == row2[index] || row5[index] == row3[index] || row5[index] == row4[index] || row5[index] == row6[index] || row5[index] == row7[index] || row5[index] == row8[index] || row5[index] == row9[index] {
retval = false
}
if row6[index] == row1[index] || row6[index] == row2[index] || row6[index] == row3[index] || row6[index] == row4[index] || row6[index] == row5[index] || row6[index] == row7[index] || row6[index] == row8[index] || row6[index] == row9[index] {
retval = false
}
if row7[index] == row1[index] || row7[index] == row2[index] || row7[index] == row3[index] || row7[index] == row4[index] || row5[index] == row6[index] || row7[index] == row6[index] || row7[index] == row8[index] || row7[index] == row9[index] {
retval = false
}
if row8[index] == row1[index] || row8[index] == row2[index] || row8[index] == row3[index] || row8[index] == row4[index] || row8[index] == row5[index] || row8[index] == row6[index] || row8[index] == row7[index] || row8[index] == row9[index] {
retval = false
}
if row9[index] == row1[index] || row9[index] == row2[index] || row9[index] == row3[index] || row9[index] == row4[index] || row9[index] == row5[index] || row9[index] == row6[index] || row9[index] == row7[index] || row9[index] == row8[index] {
retval = false
}
}
return retval
}

12
solver/validator.go Normal file
View File

@ -0,0 +1,12 @@
package solver
// Validate the provided rows and verify it is a valid solution.
func (solver *Solver) validator(rows1Index int, rows2Index int, rows3Index int, rows4Index int, rows5Index int, rows6Index int, rows7Index int, rows8Index int, rows9Index int) {
solver.counter.Add(1)
if solver.validateCombination(solver.row1s[rows1Index], solver.row2s[rows2Index], solver.row3s[rows3Index], solver.row4s[rows4Index], solver.row5s[rows5Index], solver.row6s[rows6Index], solver.row7s[rows7Index], solver.row8s[rows8Index], solver.row9s[rows9Index]) {
solver.Controller.Solutions = append(solver.Controller.Solutions, []string{solver.row1s[rows1Index], solver.row2s[rows2Index], solver.row3s[rows3Index], solver.row4s[rows4Index], solver.row5s[rows5Index], solver.row6s[rows6Index], solver.row7s[rows7Index], solver.row8s[rows8Index], solver.row9s[rows9Index]})
}
}